

Hydrogen Storage in Novel Organic Clathrates

Jerry L. Atwood
Professor and Chair
University of Missouri-Columbia
Department of Chemistry
Columbia, MO

B. Peter McGrail
Pacific Northwest Pacific Laboratory
Richland, WA

May 25, 2005

DOE 2005 Hydrogen Program Annual Review, Washington, DC, May 25, 2005

Project ID # STP53

Overview

Columbia

Columbia

Timeline

• Project start date: FY05

• Project end date: FY07

Percent complete: New Project

Budget

• Expected Total Project Funding

Phase I - 1 year

-DOE Share: 347,791

Phase II - 1 year:

-DOE Share: 352,791

• DOE Funding for FY05/07: 700,582

Barriers

Weight and volume

 Hydrogen capacity and reversibility

Targets

Gravimetric capacity: >6%

Volumetric capacity: >0.045 kg H₂/L

Min/Max delivery temp: -30/85°C

Partners

University of Missouri-Columbia; Synthesis, characterization and final project.

Pacific Northwest National Laboratory; Characterization, modeling and final project.

KEY PERSONNEL

Columbia

Dr. Jerry Atwood PI University of Missouri Dr. B. Peter McGrail Co-PI PNNL

Dr. Liem X. Dang Co-Inv PNNL

Dr. L. Rene Corrales Co-Inv PNNL

OBJECTIVES

- ■To develop and demonstrate hydrogen storage in and release from clathrates and related organic compounds
- Synthesize organic compounds which contain void space in the solid state structure
- Demonstrate absorption and retention of hydrogen in such solid state compounds under mild conditions
- Use principles of crystal engineering to modify crystal structures so as to meet or exceed the DOE storage goals

Advantages and Benefits

Feature of Technical Concept	Benefit Storage and release cycling without degradation of the host or loss of efficiency		
No ionic or covalent bond breaking or chemical reaction products			
Gas release with small temperature change	Low energy requirements for hydrogen release		
High-pressure tank not required for storage	Lower vehicle weight and improved safety		

Solving Technical Problems and Mitigation Risks

University of Missouri-

Pacific Northwest National Laboratory

Risk	Mitigation		
Clathrate absorbs H ₂ only at a low percentage	Chemical modification of clathrate		
Clathrate still absorbs H ₂ only at a low percentage	Synthesize a new type of clathrate		
Key X-ray structure cannot be obtained	Perform X-ray structure of related compound and use X-ray powder data to assure key structure		

Calix[4]arene is useful for gas,

Trimer of calix[4]arenes forms spherical assembly held together by non-covalent bonds.

Hexagonal closepacked arrangement of spheres creates lattice with void space for housing hydrogen molecules.

Section of crystal structure of (tbc4) p-tert-butyl-calix[4]arene displaying enclosed cavity.

H₂ Sorption by Non-Porous Crystals

Proof of concept: ca. 0.5% H₂ by wt

HYDROGEN SORPTION DATA, preliminary

H₂ Sorption by Non-Porous Crystals

HYDROGEN SORPTION DATA, preliminary

University of Missouri-

Columbia

HYDROGEN SORPTION DATA, preliminary

Summary of Program Plans

University of Missouri-

Columbia

TASK	2005	2006	2007	2008	2009
Task 1: Synthesis •Phase I target monomers •Phase II target monomers •Complete synthesis of Phase III monomer					
Characterization Characterization of Phase I target monomers Characterization of Phase II target monomers Characterization of Phase III target monomers monomers	_				
 Task 3: Modeling Predict clathrate structures and properties of Phase I target monomers Characterize inclusion properties of Phase II target compounds Complete characterization of final target compounds 	_				
Summary 1, 2, 3: •Complete characterization of final target compounds , •Issue Report				Go/NoGo L Demonstrat H ₂ storage	